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SIGNIFICANCE AND EXPLANATION

This report contains the lecture notes for the first of four lectures which comprise
the course entitled*“The extension of B-spline curve algorithms to surfaces™ given at SIG-
GRAPH'86. It is an elaboration and extension of the MRC report #2896 by de Boor
and Hollig. in which the basic B-spline theory is developed from the recurrence relation
rather than the original definition in terms of divided differences of the truncated power.
This avoids what, to the people in CAGD. amounts to a detour through the theory of
divided differences. Somewhat surprisingly. the resulting development is no longer than
the standard one. and in some respects seems even more direct. It does bring to the fore
the dual functionals and stresses the point that B-splines are best treated in terms of their
linear span.
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0. Introduction
b

i These lecture notes review those basic lacts about (univariate) B-splines which are
e of interest in CAGD. The intent is to give a self-contained and complete development of
o] the material in as simple and direct a way as possible. For this reason, the B-splines are
> defined via the recurrence relations, thus avoiding the discussion of divided differences
' which the traditional definition of a B-spline as a divided difference of a truncated power

function requires. As this lecture is intended to show. this does not force more elaborate 1
derivations than are available to those who feel at ease with divided differences. It does

T
g‘ force a change in the order in which facts are derived and brings more prominence to such
:35:' things as Marsden's 1dentity or the Dual Functionals than they currently have in CAGD.
::: In addition. it highlights the following point: The consideration of a single B-spline
- is not very fruitful when proving facts about B-splines, even if these facts (such as the
» smoothness of a B-spline) can be stated in terms of just one B-spline. Rather, simple
0% arguments and real understanding of B-splines are available only if one is willing to consider
v. all the B-splines of a given order for a given knot sequence. Thus it focuses attention on

P splines. i.e., on the linear combination of B-splines.

Sl The lecture deals with splines for an arbitrary knot sequence and does rarely become
_‘ more specific. In particular, the B(ernstein-Bézier)-net for a piecewise polynomial, though
: a (very) special case of a representation by B-splines. gets much less attention than it
: deserves, given its iininense usejulness in CAGD (and spline theory). But the third lecture
e takes up this topic.

:,::E The lecture deals only with spline functions. There is an immediate extension to
KR spline curves: Allow the coeflicients, be they B-spline coefficients or coefficients in some
;:'é:: polynomial form, 1o be points in IR? or IR®. But this misses the much richer structure
AUy for spline curves available because even discontinuous parametrizations may describe a

smooth curve. This topic of geometric continuity is discussed in deta:] in the fourth

;' : lecture.

k) The lecture notes are solidly based on [BH86' which covers more or less the same
:“‘ material. in a les< elaborate way and without any figures. in just seven pages.

e The relevant literature on (univariate) B-splines up to about 1975 is summarized in
:E','::: ‘B76 which also contains hints of the most exciting developments concerning B-splines
:.:s:' since then: knot insertion and the multivariate B-splines. These are covered in the second
:;::o' lecture. but knot insertion is already put to good use in the last part of this lecture. The
,{.:2- two books on spiines, B78 and .Schu81 .. which have appeared since 1975, cover B-splines

in the traditional way. As presentations of splines from the CAGD point of view. the

.::!): survey article _BFK84' and the “Killer B's™ 'BBB&5.867 are particularly recommended.
’:Es: Sponsored bv the United States Army under Contract No. DA AG209-80-0041,
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;c‘t;iu 2 Carl de Boor
::?, 1. B-splines defined
L}

We start with a partition or knot sequence. i.e., a nondecreasing sequence t :=

s (t:). The B-splines of order 1 for this knot sequence are the characteristic functions of
é‘sg this partition. i.e., the functions

‘ 1, ift; <t<i;
o Birlt) := Xu(t) := {0 otherwise. o (1.1)

Note that all these functions have been chosen here to be right-continuous. Other choices

could have been made with equal justification. The only constraint is that these B-splines
DO should form a partition of unity, i.e.,
t

‘;i‘;:. EBu(t) =1, forallt. (1.2)
) i

In particular,
= ti=t,4;, = B;y=X;=0. (1.3)

T From these first-order B-splines, we obtain higher-order B-splines by recurrrence:
"

Bk = wikBik—1 + (1 = wis1 k) Bit1,k-1 (1.4a)

. with .
‘ -————:—'——, ift; # tigsn
) wak(t) := { i T ke (1.48)

0, otherwise.

Tt Thus, the second-order B-spline is given by

".ﬂ' Br? = '“)12x1 + (1 - wi+l.2)xx+l9 (1‘5)
"‘l‘..

X and so consists, in general. of two nontrivial linear pieces which join continuously to form

a piecewise linear function which vanishes outside the interval [t;,¢;, /. For this reason.
now some call B,; a linear B-spline. If. e.g., t; = t,,; (hence X; = 0). but still ;| < t,...
‘:T') then B,; consists of just one nontrivial piece and fails to be continuous at the double
" knot ¢, = t,_,, as is shown in Fig. 1.1.
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Figure 1.1 Linear B-spline with (a) simple. (b) double knots
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Figure 1.2 Quadratic B-spline with (a) simnple. (b) triple krots
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ﬁg The third-order B-spline is given by

4%y

”,

Bz = 3By~ (1 - U“'i—l.?))BI-'v!.'l

$ = wigwiz Xy 4 (wha(l - whan2) + (1 - wiz1,3)wia,2)Xisa (1.6)
:s: ~{l - w31 —wi22) Xl
I3

:::' This shows that, in general, B,3 consists of 3 (nontrivial) quadratic pieces, and, to judge
h fromn the Fig. 1.2, these seem to join smoothly at the knots to form a C'! piecewise quadratic
;;; function which vanishes outside the interval it,,¢;, 3. Coincidences among the knots
% ty,...,tiv3 would change this. If, e.g., t; = ;=1 = t;+2 (hence X; = X;4; = 0), then
O B2 consists of just one nontrivial piece. fails to be even continuous at the triple knot ¢,.
f::: but is still C! at the simple knot ¢,.. 3, as is shown in Fig. 1.2.
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o Figure 1.3 A k-order B-spline

X

~ After k - 1 steps of the recurrence. we obtain B,k in the form

i ‘l'“-k i

B = Y bX,. (1.7)

7:21 7 =1
gl . . . - :

;::c, with each b,; a polynomial of degree < k since it is the sum of products of k1 linecar '
Wy polynomials.

Ly

From this. we infer that B,; is a piecewise polvnomial of degree < &k which vanishes

't,| outside the interval it,.t,. s and has possible breakpoints t,,---.f,. ;. In particular, B,
0

2
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B(asic)-Spline Basics 5

is just the zero function in case t, = t,.,. Also. by induction, B, is positive on the open
interval |t,,t, . . since both w,, and 1 - w,,, , are positive there.

t, ti: tyak-1 tivk

A Figure 1.4 The two weight functions in (1.4a) are positive on |t;.t,, ;'=
AN supp D,k.

Further. we see that B, is completely determined by the k-+ 1 knots ¢,....,t;.«. For

R this reason. the notation
s B(+jtis. .. tisk) = By (1.8)

4
’

J-)‘v$ is sometimes used. Other notations in use include
o

Nixk := B,y and M, := (kl/(t,'-,;k — li))Bik. (1.9)

"‘j',-\.: The many other properties of B-splines are derived most easily by considering not
.\,ﬁ' just one B-spline but the linear span of all B-splines of a given order k for a given knot
T, sequence t. This brings us to splines.

’oe 2. Splines defined

'::: A spline of order k with knot sequence t is, by definition. a linear combination
of the B-splines B, associated with that knot sequence. We denote by

w -~
E‘_" Sk = {L B.xa, : a, = IR} (2.1)

the collection of all such splines.

We have left open so far the precise nature of the knot sequence t. other than to
specify that it be a nondecreasing real sequence. In any practical situation. t is necessarily

“""'f, T3 ,‘;-:'ﬁ*m:' 2
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6 Carl de Boor

‘Q\ a finite sequence. But, since on any nontrivial interval {t,,t,,; at most k of the By

':}::‘:'; are nonzero, viz. B; k41 k,...,B;i, it doesn’t really matter whether t is finite, infinite.
or even bi-infinite: the sum in (2.1) always makes pointwise sense. since. on any interval
ti,t,41]. at most k summands are not zero.

N

o

g:::f

.“..

tj—k—‘r-l t]' tJ-l tJ',k

Figure 2.1 The k B-splines whose support contains t;,t;.,|

We will pay special attention to the following two “extreme” knot sequences. the
sequence

Z:=(...,~2,-1,0,1,2,...)

and the sequence
B:=(...,0.0,0.1.1.1....).

A spline associated with the knot sequence ZZ is called cardinal splines. This term
was chosen by Schoenberg 'Scho69" because of a connection to Whittaker's Cardinal Series.
This is not to be confused with its use in eariier spline literature where it refers to a spline
which vanishes at all points in a given sequence except for one at which it takes the value

1. The latter splines. though of great interest in spline interpolation. do not interest us
here.

Because of the uniformity of the knot sequence t ~ 7. formulae involving cardinal
B-splines are often much simpler than corresponding formulae for general B-splines. To
begin with. all cardinal B-splines (of a given order) are transiates of one another. With

the natural indexing ¢, := 1. %17, for the entries of the uniform knot sequence t = ZZ. we
have

H,k - ‘\'k(' - 1.). (22)
with
-\'k : B..k B( 0..... k} (23)
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Al
e The recurrence relations (1.4) simplify as follows:
1)
I"‘
gt ) L
< (k- 1)Ni(t) = tNe_1{t) + (k= )Ni_1(t —1). (2.1)
| ¥
%S’ The knot sequence t = IB contains just two points, viz., the points 0 and 1. but each
XN with infinite multiplicity. The only nontrivial B-splines for this sequence are those which
'8 have both 0 and 1 as knots, i.e., those By, for which t; = 0 and 1, = 1. There seems to
i be no natural way to index the entries in the sequence IB. Instead. it is customary to index
e the corresponding B-splines by the multiplicities of their two distinct knots. Precisely.
MR
oo
Al Biywy=B( 0,...0,1,....1). (2.5)
‘o o N, i’
) p+1 times v+1 tines
=S With this, the recurrence relations (1.4) simplify as follows:
&S
2
'\N‘
:h B(“,U)(t) = tB(“.y.‘_l)(t) + (1 - t)B(“_l_,,)(t). (26)
W
» This gives the formula
-\ ,.
o _ [(rTV pyv 7
e B(#,u)(t) = (1 ~ t) tY for0<t<1 (2 )
At M
.-.‘.g
for the one nontrivial polynomial piece of B(,, ., as one verifies by induction. The formula
enables us to determine the smoothness of the B-splines in this simple case: Since B, ,)
o vanishes identically outside (0.1, it has exactly v -- 1 continuous derivatives at 0 and
_f;l:j- 4 — 1 continuous derivatives at 1. This amounts to v smoothness conditions at 0 and
P # smoothness conditions at 1. Since the order of B, ,) is 4 ~ v + 1. this is a simple
/ illustration of the generally valid formula

#smoothness conditions at knot -~ multiplicity of knot = order. (2.8)

For fixed y - v. the polynomials in (2.7) form the so-called Bernstein basis (for
polvnomials of degree < u - v) and. correspondingly, the representation

p= Z B(u,u\a(“.u) (29)
h

M=

is the Bernstein form for the polynomial p = 7,. In CAGD. it ¢ more customary to
refer to (2.9) as the Bézier form (for the polynomial p) or as the Bézier polynomnial or
even the Bernstein-Bézier polynomial. It mav be simpler 1o nse the short ter:n B-form
instead.

LR Sy
PC A
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Figure 2.2 Bernstein basis of degree 4

3. A simplifying assumption

In the next sections, we develop the basic B-spline theory by studying the spline space
Sk t. i.e.. the collection of all functions s of the form

s = ZB,ka,- (3.1)

for a suitable coefficient vector a = (a,).

In practice. the knot sequence t is always finite, hence so is the sum in (3.1). This
often requires one to pay special attention to the limits of that summation. Since I find
that distracting. I will assume from now on that the knot sequence t 1s bi-infinite. This
can always be achieved simply by continuing the sequence indefinitely in both directions

(taking care to maintain its monotonicity) and choosing the additional B-spline coefficients
Lo be zero.

More than that. I will assume that

" ton := lim t, = :x. (3.2)
’ LleEa
This assumption is convenient since it ensures that everv 7 = IR is in the support of some

B-spline.
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B(asic)-Spline Basics 9

At times, it will be convenient to assume that
ti < lisk Vi (3.3)

which can always be achieved by removing from t its 1—th entry while !, = t;,x. This
does not change the space Sk since the only k—order B-splines removed thereby are zero
anyway. In fact, another way to state the condition (3.3) is:

B #0 V1. (3.3’}

4. The polynomials in S,

We show in this section that Si, contains
<k := the collection of all polynomials of degree < k,

and give a formula for the B-spline coefficients of p € 7.

We begin with Marsden’s Identity:

Theorem 4. For any 7 € IR,

(--7)f = Z Bixyix(7). | (4.1a)

with
vik(r) = (a1 = 7)o (bivk—1 — 7). (4.18)

Proof We deduce from the recurrence relation (1.4) that, for an arbitrary coefficient
sequence «,

) Bixa; = Y Bik-i ({1~ wi)aicy + wika,). (4.2)
On the other hand. for the special sequence

a; = Yi(r) = (i1 — 1) (Liwk-y — 7)

(with 7 € IR). we find for B; x_; # 0. i.e., for t; < t,.x_; that

(1 - wu)a,. g ~ wika, = ((1 ~wik)(ty = 7) T wik - (tiak-y - T))h"z,k-- 1(7) (4.3)

= (- = 1)y k(1)

since (1 - wik) f(t:) ~wikf(t1+k~-1) is the straight line which agrees with f att, andt, ,_,.
hence must equal f if, as in our case, f is linear. This shows that

ZB,szlc(T) = (- 1) Z Bik_ywyk-1(7),

DRL G RN R CAVL YA 4 v, LR W]

ey .'¢tf,:».;(1$.:f.:14 I &ﬂ}»\‘;}lﬁ:
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10 Carl de Boor

hence, by induction, that

Y Budulr) = (- = 1)* 1Y Bawalr) = (- 1)
since ¥1(7) = 1 and }_. Bij = 1 (see (1.2)). ||

Remark There may be some doubt as to why ¢,; should be identically equal to 1.
From the definition (4.1b), it would appear that i, is the product of no factors, hence,
by a standard agreement concerning the empty product, equal to 1. This is the definition

appropriate for use in induction arguments. Indeed, if you consider the coefficients in (4.2)
for k = 2 directly, you get

(1 — wi2)¥io1,2(7) + weati2(r) = (1 — wi2) - (ti = 7) + wiz - (tiv1 — 7)
(' - 7)’

which agrees with (4.3) for this case if we set v;;(7) = 1.

I

Since 7 in (4.1) is arbitrary, it follows that Si ¢ contains all polynomials of degree < k.

More than that, we can even give an explicit expression for the required coefficients, as
follows.

By dividing (4.1a) by (k - 1)! and then differentiating it with respect to 7, we obtain
the identities

,_l.k-—u _ v—1 T
(—-(7C‘—_-]—I;)T =Z B,‘k( D(L_ 1\(;!};( ) . v>0, (4.4)

with Df the derivative of the function f. On using this identity in the Taylor formula

- Z ( - T)k—uDk-”V (T)
s (k- v)! P

v=1

valid for any p € 7.k, we conclude that any such polynomial can be written in the form

p= Z BixAiep . (4.50)
with A,x given by the rule
k ,
-DY Yu(r L
Aief = Z ( ()k - 1)'k( ) D* f(7). (4.5b)
v=1 )

Here are two special cases of particular interest. For p = 1. we get

1= Bu (4.6)
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B(asic)-Spline Basics 11

since D* 'y, = (—1)*~!(k — 1)!, and this shows that the B, form a partition of unity.
Further, since D*~2y,; is a linear polynomial which vanishes at

t, o= (tiva + oo+ tisk-) /(K - 1), (4.7)
we get the important identity

p=_Bap(t;) Vpem,. (4.8)

Remark In the cardinal case,

waln)/te- 1= (P77 FT N, (4152

while in the Bernstein-Bézier case,

Yiou)7) = (=71 = 1)¥ = (=)* By b/ (“ * "). (4.10)

5. The pp functions contained in Sy

In this section, we show that the spline space Sk ¢ coincides with a certain space of
pp( := piecewise polynomial) functions.

Each s € S, 4 is pp of degree < k with breakpoint sequence t since each By is pp of
degree < k and has breakpoints t;,...,t;s%. In symbols.

Sk't Q 7l’<k7g. (5.1)
But Si ¢ is usually a proper subspace of 7 ¢ since. depending on the knot multiplicities
#b=F{t; 8, = t;}, (5.2)

the splines in Sy ¢ are more or less smooth, while the typical element of m ., ¢ has jump
discontinuities at cvery ;.

For the precise description, given in Theorem 5 below, of the smoothness conditions
satisfied by the elements of Si ¢. we make use of Marsden’s Identity, (4.1), since it provides
us with the B-spline coefficients of various pp functions in S, as follows.
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Yi4

ty tioy tiz2=tiya\ tiyq

Figure 5.1 B, and v,4; note the double knot

Since B;i(t;) # 0 implies ;x(t;) = O (see Fig. 5.1), the choice 7 = t, in (4.1) leaves only
terms with support either entirely to the left or else entirely to the right of t;; see Fig. 5.2.
This implies that

(-t)5 = ZB:ktﬁ.k (5.3)
127
with
a. := max{a,0} (5.4)

the positive part of the number a. More than that, since B;x(t;) # 0 implies DY~ 't/),-k(tj) =
0 in case v < #t,, the same observation applied to (4.4) shows that

(-— t])'i_" € Sk for 1 <v < #t. (5.5)

Theorem 5. The space S ¢ coincides with the space S of all piecewise polynomials

of degree < k with breakpoints t; which are k - 1 — #t, times continuously differentiable
at f,.

Proof Assume without loss of generality (see Sec. 3) that
f; < t1+k \v-l'.

It is sufficient to prove that. for any finite interval I := {a, b;, the restriction S ; of the space

S to the interval I coincides with the restriction of Si ¢ to that interval. The latter space
is spanned by all the B-splines having some support in /. i.e.. all Byx with (t;.¢,.¢)7 1 = 0.
The space S;; has a basis consisting of the functions

(—a)* V. v=1, ki ()Y v 1 sty for @< t, < b (5.6)
e e . ERE R P I '«‘.‘(.)1\'!# ”‘"‘_-..-'\-‘-'5
R AP _, RS SR ‘.-,\r{u'-" Yy LTI '-‘.'/.'-.'.-‘J’ ¢ NI N \._‘r“
"-’ r..-u. ‘C;-. ."--‘-.’ P AR ‘*i:'a.tf»‘e-'it:-:%.a? el ,-._‘_ $s -} S‘n:-" '-‘$
e ¥ Lo . W \. -4 \. )

,‘¢£) T Bt Lot = . : ARUHRR .

"'a ‘o-vt 3
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Figure 5.2 The summands B;3t;3(t;) and their sum, (- - ¢,)?

P Figure 5.3 The summands B;3y¥;3(t;),¢ > j. and their sum, (- - (,). "
{ ] 7
R
18 This follows from the observation that a piecewise polynormial function f with a break-
5‘ 4 . . . P . .
‘f point at t, which is k — 1 - #{, times continuously differentiable there can be written
uniquely as
\ #t,
k-
J‘ f=p+ Z('-t,)+ Yeu,
-‘ v=1
o with p a suitable polynomial of degree < k and suitable coeflicients ¢,. Since each of the
v functions in (5.6) lies in Si.¢, by (5.3) and (5.5). we conclude that
)
a"' put P -
] St < (Ska)u- (5.7)
o

'n)'v)w),v,ﬂ \,‘\:"*.\':’v'"vvﬂ R -*v".'v«. ‘."'.' .,a RSN 1.'-." O, "-1\‘_1.._,\“\. -v,\‘ 2T S e

*!
N L { o r‘ J' -
o ‘) oY \‘ ~ 1 1.. * 1.- . »
ﬁ voniuls \"':."j,-. by AL -; ::'(s'\.*.’r Ly E\.{s‘ -4." '-' \‘('-"' o :{J' ." : :“'\ 3: }\.' '{x%\" "'\\ o NG \':"{ ':*:::":
J . ) % ‘ A
"’Ma NI NN ALV TG VT LA H‘a a., 0.5\ ’N l" ’P Wﬁ' .-"l \’Q’ m‘m. .
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ey

Eé: Figure 5.4 (a) The six quadratic B-splines for the case of one simple and

o one double interior knot: and

Mgr* (b) the corresponding truncated power basis.

e

ﬂ‘a On the other hand, the dimension of .§;,, i.e., the number of functions in (5.6), equals the
:o“ number of B-splines with some support in I (since it equals k + Sa(t,(b #t,), hence is an
RN upper bound on the dimension of (Sk,¢)j;. This implies that equality must hold in (3.7).
N which is what we set out to prove. |!!

g

:"‘ﬁ Remark The argument from Linear Algebra used here is the following: Suppose
. $ that we know a basis, (f1, f2,...,fn) say, for the linear subspace F, and that we further
:h know a sequence (g;,gz2,....gm) whose span, G say, contains each of the f,. Then, of
e course, F C G and so

‘ n= dim F < dim G < m.

;?_‘: If we now know. in addition, that n = m, then necessarilv F = G. Moreover, then
) necesarily dim G - m. i.e.. the sequence (g,.g3....,9m) must be linearly independent
e (since it then is minimally spanning for G). In our particular situation. this last observation
o implies that the set of B-splines having some support in / must be linearly independent
::}:' over /. We pick up on this in the next section.

RS

%

.0‘.5

Aty ' ‘_'. ‘
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. ‘B’ stands for ‘BASIC’

In this section. we discuss the basis property of the B-splines. as a consequence of

oy Theorem 5 and its proof.
o3

s _ ) . .

:‘_;-1 From the Remark following Theorem 5, we obtain the following sharpening of Theorem
4 ;

&

ey Theorem 6. Let I := {a,b be a finite interval. Then the restrictions
G

d'.

1S {Bikir : Biri1 # 0} (6.1)
::.;.

o) of those B-splines which have some support on I form a basis for the space of pp functions

of degice < k on I with breakpoints {¢,: @ < t; < b} and which are k-- 1 - #t, continuously

A differentiable at each of their breakpoints t,.
)
AN
\,'i{' We conclude that the number of smoothness conditions at a knot t, guaranteed to be
’\-:'-{ satisfied by every spline in Sk ¢ equals k — #t,. This proves the formula

W

e #smoothness conditions at knot + multiplicity of knot = order (2.8)
o . . . . . . -
K> cited earlier (in connection with the Bernstein-Bézier form).
75 .
el It is worthwhile to think about this the other way around. Suppose we start off with

a partition

.;\::. a=:fl<$2<---<£e<€e+1:=‘b
v;’_ of the interval / := a.b: and wish to consider the space

o

i Tk

-
‘:.‘ ; of all pp functions of degree : k on I with breakpoints & which satisfy v, smoothness

ity conditions at &,. i.e., are v, - 1 times continuously differentiable at £,,v:. Then a B-spline

L

:::::: basis for this space is provided by (6.1). with the knot sequence t constructed from the
UM breakpoint sequence £ in the following way: To the sequence

"‘:}-t (Eq..... €0, 85, 830 Epenn 6L (6.2)
' . .

3 v: times .. times ve times

. adjoin at the beginning k points < a and at the end k points > 6. While the knots in
o (6.2) have to be exactly as shown to achieve the specified smoothness at the specified
e A breakpoints, the 2k additional knots are quite arbitrary. They are often chosen to equal «
ol resp. b. and this has certain advantages {among other things that of simplicity). With such
X it a choice, it is necessary to modify the definition (1.1) so as to include the right endpoint.
el b. into the support of the rightmost nontrivial B,;. In other words. if n is such that

o

:q-: tn < tn.‘.l:b.

,.

!

RIS Ny

e

el *ﬁ:\ T
ARl "‘

;0 ;".‘" “'«""*‘" (T e (e X MORGIA \'o'*':' ik 'n Yyt 'o“'b
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o
::%E then
e 1, ift;<t<b
Ay = =< " t= - 6.3
'a:" Bni(t) = Xal() { 0, otherwise. (6.3)
%‘4 This ensures that, in evaluating a spline or its derivatives at b, we obtain the limit from
' the left.
!
%!; The identification of Sx ¢ with a certain space of pp functions allows the following
"%k conclusions of importance in calculations to be discussed later.
[}
';:' Corollary 1. If t; < t,;x—;. then the derivative of a spline in Si ¢ is a spline of
t A degree < k — 1 with respect to the same knot sequence, i.e., DSk ¢ C Sk-1.t.
"
K Proof By assumption, #¢, < k, hence the pp functions in Si ¢ are continuous,
therefore differentiable (if we accept a possible jump at ¢; in the derivative Ds of s € Sy ¢
:" in case #t; = k — 1). Further, such a derivative Ds is pp of degree < k - 1 and satisfies
1Y k — #t, — 1 smoothness conditions at ¢;, hence belongs to Si_1.¢, by Theorem 5 or 6. |}|
o
§
L -
f:g,,: Corollary 2. If t is a refinement of the knot sequence t, then Si . C S, ;.
1- Proof Since t is a refinement of t, i.e., contains entries in addition to those of t,
:*t- the pp functions in Si ¢ satisfy all the conditions which, by Theorem 5 or 6, characterize
1 the pp functions in S ;. (But the converse does not hold, since the pp functions in 5 ;
o may have more breakpomts and/or may be less smooth at some breakpoints than the pp
‘ functions in Sk¢.) i}
L) ;.
5:::; These corollaries point out that it should be possible, i principle, to compute from
:‘:tf the B-spline coefficients of a spline in Si ¢ the B-spline coefficients of its derivative and its
,-::, ' B-spline coefficients with respect to a refined knot sequence. To carry out such calculations,
" though, we need a means of expressing the B-spline coefficients of a spline in terms of other
W5 information, such as its values and derivatives at certain points. If the spline happens to be
w.:.‘ a polynomial, then such a formula is provided by (4.5). We show in the next section that
2:3 the same formula works for any spline (provided we are willing to restrict the parameter
g )
::::‘ 7 suitably).

7. The dual functionals

In this section, we prove that the formula (4.5) for the B-spline coefficients o a

polynomial is valid for an arbitrary spline provided we restrict the parameter 7 in the
definition

;
?:"’ k ( D) v—=1
D Wtk( ) k- -
£ VDD —w-n P (4.5b)
kY =1 )
$
4 to the support of B,y.
18
e
R
)
"
L}
X
: ROR Y AV A A T O AT
.':. 2, -F‘../\.',. Y {v\“_f g ‘:) ) _".:Y» e ‘ RN ,_-,'_ “"r‘\'}}:r-‘t'}_ .\(‘;“x‘.;f\,& -"' N
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For this, we agree. consistent with (1.1b), that all derivatives in (4.5b) are to be taken
as limits from the right in case 7 coincides with a knot (except, perhaps, when 7 is the
right endpoint of the interval of interest, see (6.3)).

tiva

Figure 7.1 The three polvnomials, p;. 2, p;—1.p1, which agree with some
quadratic B-spline B, on the knot interval jt;,t;.,|.

Theorem 7. If 7 in definition (4.5b) of A, is chosen in the interval t,,¢;, i, then

A,k(ZBjkaj) = a,. (7.1)

Proof We prove that, under the given restriction,

e 1ot =g
ABye = b,y o= {O, otherwise. (7.2)

Assume that 7 € t;,tlﬂ( ‘tiote, k. Then (7.2) requires proof only for y =l -k~ 1,....1
since. for all other ;.1 # j and B, vanishes identically on |¢;,¢;.1 . hence also Ak B,x = 0.
For each of the remaining j's. let p, be the polynomial which agrees with B, on it;,t;.,.
Then

’\thJk = AkP; .

On the other hand,

Py Y P A, (7.3)

ARCPTE WLt LF Wl S0 vﬂ' {q, _-r ANV AR @ERCAEANI T A by VR0
A " AT z % ”‘,”;"“,.-\, N
LS "~ ‘-_),-..(,-1’-, %‘&ﬁ. &.. 33 J,\ _, *g‘r .~\:;
- ' \
.

¢ ot LS 0"
SRR dcs:
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since this holds by (4.5a) on [t;,t1+1]. This forces A,kp,, hence Ak Bk, to equal &;; for
i, =1-k+1,...,1, since, by Theorem 6 or directly from the fact that (4.5a) holds for
every p € m.y, the sequence

pl—k-«r—l,"'apl (74)

is linearly independent. ||

Remark The argument used here is that, for a linearly independent sequence
(f1.--.,fx). the only way the equation

fi= ijaij

=1

can hold is for a,, to equal 1 for 1 = 7 and zero otherwise. Further, the linear independence
of the sequence (7.4) follows from the validity of (4.3a) for every p € m since that implies
that the k—sequence (7.4) is spanning for the k--dimensional space <. It also follows
from Theorem 6 with I = ‘t;,t;+1i.

The two sequences, (B;x) and (A, ), are said to be bi-orthonormal or dual to each

-y other because they satisfy (7.2). For this reason, the linear functionals A;x are at times
” referred to as the dual functionals for the B-splines.

We exploit the simple formula (7.1) for the i—th B-spline coefficient of a spline in
subsequent sections, in order to derive algorithms for differentiation and knot insertion and,
N ultimately, to derive statements about the condition and the shape-preserving property of
- B-splines.

\

0\

100 101

Figure 8.1 The power coefficients of these two very different linear poly-
nomials differ by only 0.1%.

‘al‘;ﬂq:'"‘ﬁ
Wirkyn¥

l
't
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8. Condition

The condition of a basis measures how closely relative changes in the coefficients are
matched by the resulting relative changes in the element represented. The closer the match,
the better conditioned the basis is said to be. For example. the power basis 1.¢.t2.... is
not a good way to represent polynomials if we are interested in a positive interval [a, b’
with a/b close to 1. If, e.g., [a, b’ = [100,101.. then a 0.1% change in the power coefficients
of the straight line p: t — t — 100 can change its behavior on 1100, 101! by 100%; see
Fig. 8.1.

If we use the appropriately shifted power basis. e.g., write p in the form p(t) =
a ~ 3(t — 100). then a .1% change in the coefficients a, 8 of this form produces a .1%
change in the polynomial on the interval [100,101;. The appropriately shifted power basis
is often much better conditioned than the power basis. In this section. we discuss briefly |
the condition of the B--pline basis.

This requires us to bound the spline in terms of its B-spline coefficients and the B-
spline coefficients in terms of the spline. The first turns out to be easy, while the second
requires some work. Precisely, we are looking for constants m > 0 and M for which the
inequalities

m max 'a,;i < max; Z Bik(t)a; < M maxa,; (8.1)
1 t : 1

hold regardless of what the coefficient vector @ = (a,) might be. Since the B-splines are
nonnegative and sum to 1 at any point, we have

*ZBik(t)az‘ < S‘Bik(t)ia,"‘ < YB,‘k(t) max a;' = maxa;,
- a4 Land ] ?

hence the second inequality always holds with M = 1. For the first inequality, we have to
work a little harder.

Set s :== Y_ Bixai. We know from Theorem 7 that

k
=D) () k-
a, = Ajixs = N ( D7 Vs(7) (8.2)
./L:l (k — 1)!

with 7 some point which we can freely choose in the interval t;.t,.., . We now bound this
sum in terms of max; s(t)..

Suppose that 7 € t;,t;.1:Z ‘t;,t;xiki. Then, for some const, depending only on k,
and for all p € n.y and all .

D’p(r). < const, (At;) ™’ nax p(t) . (8.3)
t<tat .,
The existence of such a const, follows for the case At; = 1 from the fact that 7, is

finite-dimensional. and from this it follows for arbitrary Af; by scaling. Since s agrees
with some polynomial of degree < k on t;.t,_, . we conclude that

D’s(r) < consty (At;)77 max  s(t). (8.4)

t,Stot .

W W LRSI oW oW R e G S i bt i oy
N A ARy SO NS,
oy _::..::_-\.‘_“_%_\-.j, SESRN \":\':- ""::;-.‘;\.‘:,\":\‘:\"\‘

- SRR ORI O Sy
';_}. N VN o ~,,\.'_\\$.¢$*&ss
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On the other hand, t';x = (t,«1—+)...(te=k-1 - *) is also a polynomial of degree < k, and

max U{t) < const} At k-1 (8.5)
Sty L.y

for some const} which depends only on k and with 1;-,t;-,,, a largest interval of that
form in it,,t,.x;. Therefore we choose { = [* and then obtain, from (8.3) with p = ¢4 and
from (8.4), the bound

DY ik (r) Dy _.5(7)! < (consty)?const}, max [s(t):.
t,<t<t, .4

Now sum these bounds over v and divide by (k — 1)! to obtain

a;i = A;s| < const z(”tlgtx s(t).
v b bk

with const depending only on k.

We have proved the following

Theorem 8. There exists a constant Dj depending only on k so that, for all knot
sequences t and all s € S; 4. and for all 1,

Aiksi < Dk: max s(t)i. (8.6)

The best value for D, is not known exactly but there is strong numerical evidence
that Dy ~ 251 If we only consider eardinal splines, i.e.. only uniform knot sequences,
then the best value for Dy is known to be less than (7 /2)*

Corollary. The inequalities (8.1) hold with m =1 Dy and M = 1.

9. Evaluation

In this section. we discuss the use of the recurrence relations (1.4) for the evaluation

of a spline
§ = Z B,k(],l (gl)

from its B-spline coefficients (a,).
We already observed in (4.2) that the recurrence relations imply

§ = ZB,ka, = ZB"“' _,a;] . (9.2)

!

with

a (1 wklay e wka,. (9.3)

ot ~ WY AT \" e g r,mv' (vrv'."‘(“ WA {
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Note that a;l is not a constant, but is the straight line through the points (t,,a, ;) and

(t:.x—1.a,). In particular. a;l"(t) s a conver combination of a,_;anda, ift, <t <, k_;.

After k — 1-fold iteration of this procedure, we arrive at the formula
k-
S = Z B,‘)Ul .
1

which shows that

1

Algorithm 9. From given constant polynoniials a;"‘ = ey, 1= ) - k+ 1,07,

. . . ' . {r:
(which determine < := Y~ B,xa, on 't,.t;.,’), generate polynomials ai W=,k - 1.
by the recurrence
!

ir-1; »r]

a, = (1 - w,.k-,)a;_] - ;',.k-,a;rf. J—k-r+1<1<. (9.4)

k-1 . ,
Then s = a’ " on tjvt;-1. Moreover, for ¢, <

t < t;.1, the weight w, k. ,{t) in (9.4)
k-1

lies between 0 and 1. Hence the computation of s(t) = a;

repeated formation of convex combinations.

(t) via (9.4) cousists of the

In the curdinal case (see Sec. 2, esp. (2.2-4)), the algorithm simplifies, as {ollows. Now

s = Nl ~d)ag =) Neoa(—d)e, (k- 1),

with N
all‘ =(t+k~-1-")a,_y+(=1a,.
Henc
k-l ' -
s < a, (k- 1) on j.j+41,
with (9.4) 7

a” =ik -r - ~)affl1 + (- 1)a,” S R N )

In the Bernstein-Bézier case (see Sec. 2, esp. (2.5-9)). all the noutrivial weight func-
tions &, » , are the same. i.e..

1 k- ,(I) = 1.
Thus. for
&= L l;(u.b,"t,u‘u’r*
uruvzh

we get
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22 Car! de Boor

$ = a(p,0) On |'0. l:,

with (9.4)]3

¢u)t) = (1 ~tauerpy v tauowry wtv=rir=h-1

This is de Casteljau’s Algorithm for the evaluation of the B-form.

10. Differentiation

In this section. we derive a formula for the B-spline coefficients of the derivative of a
spline in terms of the B-spline coefficients of the spline.

By Corollary 1 to Theorem 6, the derivative Ds of a spline s ¢ Sy ¢ is again a spline
with the same knot sequence but of one order lower. This means that. by Theorem 7, we
can compute its B-spline coefficients (a!) by the formula

a: = A k-1(Ds)

provided we use 1 € [t,, ¢, x_;.

To relate a’ to a. we express A, x_1D as a linear combination of the functionals A,
making use of the fact that A, depends linearly on y;x,~ recall the definition

k

(=D)" 'eirlr) -
2 f e - v , 4.5%
kS VE—I &) D*"¥ f(r) (4.5b)
- and that
(zxok«l - tz)‘o‘z.k*l = Yk T W) k- (101)

These facts imply that

oy

) - U l(u,k—l.,, )(7) K-y
(Ae A, (7 1 R pRev i)
“~ Dv bk (7)
(b, ”*’ D* Y f (7).
=1 ’

the last equality by (10.1) and since D¥ 'y .oy -~ 0

. On the other hand, directly from
the definition (1.5b),

U l) vl ‘l T ’ -1
YO R SRR AR (G
(7 -
k1 . 1
\‘( [)> Ly k () kv*t_
RV SR I Tt
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g:: Comparison of these two displays shows that
W5 . k1 .
W Avk—1D = m (’\zk = Aok ) (10.2)
“.
:1:: Assuming that B;x_, # O, i.e., that t; < t;,x.,. we can choose 7 € (t;,ti1k-1) =
i) (ti—1stick—1) N {tit, k). This yields
',.;n Algorithm 10. Compute the coefficients for 3 a!B; x_y := DY a,;B,x by
i
Yy a; —a;_ .
i a, = - LAt < tick-g. (10.3)
e T (k- —t)/(k=1)"
.5 Remark What happens when t; = t;.x—1? In this case, B, k-1 = 0, hence there
g is no need to calculate a/. To be precise. in this case, the spline s = Y_, Bixa; may not
"* even be continuous at t;, therefore (Ds)(t;) makes no sense. On the other hand, the
* left and the right limit, (Ds)(t;—) and (Ds)(t;+), always make sense. and the algorithm
- would provide all the a’’'s needed for their calculation. By applying the algorithm to the
h:: particular coefficient sequence a = (6,;). we obtain the formula
4§
¢
Bt k-1 k-1
&) DB, = —————Bix-1 - ————Bis1xk-1. (10.4)
tiak—1— t tt+k_tt+l
i
:". In terms of the alternative notations (1.9) for B-splines, this reads
l':o::
:?4; D’Vt’k = AMi,k—l - M1+l,k—l-
REA
Since Y, N;x = 1, this implies that
3}
.:
/M,,k_, =1 (10.5)
R |
and so indicates why the particular normalization ij
"T ) '
3 : J
B M = — Bk '
B ti-k — b
,:'::(
i is of interest.
f::’:, In the cardinal case, (10.3) reduces to
L R
:f'Q‘l
N
i a' =a, - a,_; = Va (10.3)2
-‘-’a:"
- and (10.4) reads
b DN = Ne_y = N (- - 1). (104)z
, L.x"l' 550 Wy, iyh Wl Wiy At 0y 0 g e QAN ADADE
L "w.,.h::.ﬁ:; i el S 2 "i‘f.:;i?. e :f.g iy .?-' e .a:- i "a“ ‘413::
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On integrating this formula. we obtain

Ni(t) = t Ni—(r)dr (10.6)

t~-1

since both sides of (10.6) vanish for negative t. In terms of the convolution product

(r+9)0) = [ 1t - ng(r)ar
of two functions f and g, this gives the important formula
Ni = Ny« Ny(- + 1). (10.7)
This shows that Ny(- + k — 1) is the k—fold convolution product of Ny, i.e.,

N'k("‘}'k—l):!v]*‘Nl*...*Nj.

—

k terms

In the Bernstein-Bézier case, we get
D z Bup)aue) = z Bu,)a(u)
p+v=h p+v=h-1
with (10.3)B

Qp,v) = (“ +v+ l)(a(#+l,u) - a’(p..u-»l))-

11. Knot insertion

In this section, we discuss the most important CAGD contribution to (univariate)
spline theory, viz., the idea of knot insertion (a.k.a. subdivision). Since the spline order,

k., will not change in this section, we will usually suppress it and write B; instead of By,
¥, instead of ¥, etc.

Simply put, knot insertion involves rewriting a given spline as a spline with a refined
knot sequence, as can always be done by Corollary 2 of Theorem 6. Such a calculation is
worthwhile since the B-spline coefficients are nearly equal to values of the spline at known

points. and this is more nearly so when the knots are closer together. Here is the precise
statement.

Theorem 11. If the spline s = }_, B,aq, is continuously differentiable. then

- s(t;) < const t “sup.D?s(t). {11.1)
1
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with
= (tiz1 ttivz ...+ tivk—1)/(k = 1) (4.7)

and
it o= .
It :=sup(ti-) — t,).
1

Proof Recall from Sec. & that

la;t = !A\;s| < const max Is(t)l. (8.6)
: fSt<tox

Further, recall from Sec. 4 (esp. (4.8)) that
A;p=p(t;) Ype m;.

Thus, choosing, in particular, p := s(¢;) + (- — t;)Ds(t;), the linear Taylor polynomial for
s at t;, we get

a, — s(t]) = ia; — p(t;) = Ai(s — p)I < const max (s - p)(t)!

t, <t<t, .,

,!

ok — th)?
<. const g—g——-_')_. max lDzs(t)!. ;!:
8 t'f”stl+k

Figure 11.1 A cubic spline and its control polygon. The end knots are
quadruple.

This suggests consideration of the control polygon associated with the representa-
R tion 3 Bia, of the spline s as an element of S;. This control polygon will be denoted
i} .
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26 Carl de Boor

It is the broken line or piecewise linear function with vertices P;

;= (t,,a,). For, the

theorem implies that the control polygon will be close to s if it: is small. Here is the

precise statement.

Corollary. Let C,.¢ be the control polygon associated with the representation
Y, Bia, of the continuous spline s as an element of S;. Then

sup|{s(t) — Cqae(t)! < const t.?sup D3s(t). (11.2)
t t

Proof Lett; <t <t , and let p be the linear polynomial which agrees with s at
t; and t; .. Then

1

- . 2 I
) =)l S Jti, - 617/8, max 1Ds(r));,

vt

while

p(t) - Cae(t)] < max{ls(t]) — a,i,is(t],,) — ais1.} < const it|> max | D?s(r)|
T

by the theorem. !||

Figure 11.2 The control polygon of Fig. 11.1 and three midpoint refine-
ments.

This shows that the control polygon ', converges to the spline s as we refine the
knot sequence t. Since the typical graphical equipment only draws broken lines. anyway.
this makes it attractive to construct refined control polygons for a spline.

For this. we need to know how to compute. from its B- spline coefficients a, as an
element of S,. the B-spline coefficients a, for the spline s with respect to a refined knot
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sequence t. By Theorem 7, this is a question of comparing the corresponding :\, with A,.
Since the dual functional

k

v-1 T
Z D) ;;)!'()D"""f(r) (4.56)

depends linearly on ,, this requires nothing more than to express
vy = (ti+l - ) (tu-k—l - )

as a linear combination of the y,.

This is particularly easy when t is obtained from t by adding just one knot, say the
point {. Then

hence there is some actual computing necessary only for t; < f < t,.«_,. For this case.

oty b BY = (i — ) (k-2 = ¢) @ty = ) + B(tivk-1 — )]

provided a(t, - -) + 8(t; kg ~-) = (£ - *), ie.,
a =1~ w(t) and 8 = w,(f).

Since , = 8, < 1 < t+k—1 = L4k, We can choose 7 in the definition (4.5b) in the interval
(l!vt;rk) = “t 1oisk- 1) ri (thtt-rk')’ This proves

Algorithm 11. If the knot sequence t is obtained from the knot sequence t by
addition of the point t. then the coefficients a, for the spline s with respect to the refined
knot sequence are given by

a;, ift,‘..ku] S i,
i = (1 - wilf))a-y -wi(fay, ifty << tiogy (11.3)
ag-1, if t S t;.

Observe that w,(f) < ‘0.1 when t; < { < t,,x..;. and thus the coefficients a are convex
combinations of the coefficients a.

This algorithm has the following very pretty graphical interpretation.

Corollary. The refined control polygon C; ; can be thought of as having been ob-
tained by interpolation at its vertices to the original control polygon C, . i.e.,

Caill;) = Caglt;) forall 7. (11.4)
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28 Car] de Boor

Proof Consider the straight line p:t — ¢t. It is a spline and, by (4.8),
p= Z Bit;,

i.e., (t;) is its B-spline coefficient sequence with respect to the knot sequence t. In partic-

N ular, it is its own control polygon. i.e., C¢- + = p, regardless of what the knot sequence t
s might be. This implies that (11.3) also holds with every e replaced by ¢". |!!
- This says that the point P := (f;.d;) lies on the segment {P,_;, P;] and cuts this
1o segment in the ratio (£ - ¢,) : (t - f) This is ill Fi h I

>, P jrk-1 is is illustrated in Figure 11.3 for the contro
5{ polygon of Figure 11.1.
!
&.‘
;:;‘.. -1t tj+1
X 0—e—0
B
o Py

\'_4'.:,’. tis1 Q@ ty
-y
1 X

. P, i

" X

S

o
Kt
A '.';
Y.
"t‘:t
) t)-2 0 6 ty+3
o
iy PJ'

N . , 2o
%—\ Figure 11.3 Insertion of t = 2 into the knot sequence
ol t = (0,0,0,0,1,3,5,5,5,5), with k = 4.
i
T If r ;= #f < k - 1, then, after just (k — 1 - r)-fold insertion of {. we obtain a knot
| & sequence t in which the number t occurs exactly k — 1 times. Thls means that there is
o exactly one B-spline for that knot sequence which is not zero at {. Hence it must equal I
oY at t and its coefficient must provide the value of s at {. This makes it less surprising that
uby the calculations in Algorithms 9 and 11 are identical.
"
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1Yy
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N Figure 11.4 The cubic spline and its control polygon from Figure 11.1 and
> the sequence of control polygons generated by three-fold inser-
tion of the same knot. (The finest control polygon differs from
-4 its predecessor only by an additional vertex point.)

Figure 11.5 Conversion to B-net by (k — 2)-fold insertion of each knot

e -; Conversion to B-net Let t' be the refined knot sequence which contains each of

i the knots in t exactly k — 1 times. Then each corresponding B-spline B]'k is nonzero on
just one knot interval, hence coincides there with a properly shifted and scaled elernent of
the Bernstein basis. The k& B-spline coefficients a; associated in this wav with a knot
' interval therefore provide the coefficients in the B-form for the polynomial with which the
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30 Carl de Boor

spline agrees on that knot interval. The coefficient sequence (a;), or the control polygon

C, ¢ are called the B-net for the given spline. It can be obtained by inserting each knot '
t, of the spline k — 1 — #t; times. The process can be specded up slightly by inserting

first every other knot, and, in a second round. inserting the remaining knots. The latter

insertion process is then entirely local and depends only on the ratio of the two knot

intervals containing the knot being inserted.

While the formulas do simplify for the cardinal case, they are not of much use in that
form since insertion of one knot into the sequence t=7Z would destroy the uniformity of
the knot sequence. But it makes good sense to develop formulas for inserting the same
number of uniformly spaced knots into every interval 1,7 + 1 since this produces again a
uniform knot sequence. Because of its practical importance, we treat this case separately.
in the next section.

12. Knot insertion for cardinal splines

In this section. we consider knot refinement for cardinal splines. i.e., splines with
a uniform knot sequence. Here it is desirable to have the refined knot sequence again
uniform. We restrict attention to the case that the given knot sequence is t=ZZ. This is
no real restriction since an arbitrary uniform knot sequence can always be written in the .
form a ~ 37 for appropriate scalars a and 3. and if s is a spline with that knot sequence,
then s(a ~ 3:) is a spline with the knot sequence ZZ.

If we insert m -- 1 uniformly spaced knots into every knot interval of ZZ, then the
refined knot sequence is t = ZZ ‘m. The corresponding B-splines B, are

B = Nk(- - 1),
with
Ni(t) := Ni(mt)

an appropriately scaled version of the standard cardinal B-spline N,. This makes it trivial
to deterinine a, tn case k = 1. Since

Vo= By By )= B o), (12.1)
\. we find for this case that

‘\;.-:

ks dpsy) =a; for y=0..... m - 1

A

Ney

The formula for general order k is obtained from thi= with the aid of the convolution
:$ formula _

e Nes N s Nyl 1) (10.7)
A

B! from Sec. 10. as follows. Ve define

i:.'; S0 L N Na, >_‘ \,( ta,,. 7 1., k. (12.2)

v A R R R ARA Al
AL AR ALK Y S R S S S N "3‘.:".- R0 ":‘ R R RN RN AN
> o X - PR v‘ LR 5" Q." ‘.‘ '\i R K ,( et e W Wt W
-)'5 ’ (‘\ ('\-( > ." A (\ .\u,‘. \ 't“ f 5‘_ \\g'\‘ ApAa e ,'\_-.‘_\
s I}“h' NST g Oy : " N N OO ., o, '.‘ 'f\. et __\‘;»:,s' v
RN a".l.l. {8, e .
G (L) . Wy



TSI

& o S s o8
MM

v YTy T Ll TV T T WY WY W BT W N e = e e e = e o o o

B(asic)-Spline Basics 31

Then &, = a,x, and, from (10.7) and (12.1),

Nx(' - J)

s

Spe1 = 8p % Ny (ZN(-'a;r)*

—

]Z__

Z‘Z y —z)*. (- +J) ay

1 3=1
Nesa=t=3+1)/m

m
ZZN»-+1(' - t)/m Qivytyr

t =1

2

Here, we have used the following consequence of the convolution formula (10.7):

Neoi(-—a) x Ny(- - 8) = /;v,_i( m(- - 1) — a)Ny(m7 - 3)dr
= /N,_,(m -—0+ 8- a)Ny(o)do/m
= N,(-+ 8 - a).
We conclude that

air+1:= (Gir ~ QGit1p T ..+ Gixm_1,)/m, forr >0. (12.2)

Here is the full algorithm.

Algorithm 12. Given the B-spline coefficients a = (a;) of s € Si z, its B-spline
coefficients @ = {&,) with respect to the refined knot sequence Z/m can be computed as
follows:

Ami+j,1 -5 A4, j=0.....m—-1', i

m-1 !

a;, = E a,,-‘]‘,_l/m, 7':2.,...,k;

J::O

a, := Q.

In practice. one would use the algorithm repeatedly with m = 2 rather than once with
a larger m. For, the computational cost is

m(k - D){{m - 1)4 - D).

with n the number of coefficients to start with. and A and D the cost of one addition.
respectively division. If, e.g.. the targeted refinement is to have 2#n coeflicients, then the

! (
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32 Car! de Boor

cost ratio of the choice m = 2¥ versus the use of u applications of the algorithm, each time
with m = 2, is

24((2% - 1)A + D)
(2+22~...+2¢)(A~ D)

~2¥'A4 D2

In addition. even though the repeated application, with m = 2, takes roughly twice as
many divisions. these are just divisions by 2.

;. X 13. Shape preservation

In this section. we use knot insertion to prove the shape preserving property of B-

splines. Roughly speaking, this property says that a spline has the same shape as its
control polygon.

P We begin with the

l ™

e convex hull property Ift; <t <t;., then s(t) is a convex combination of the k

X B-spline coefficients a,_x41,...,4q;.

v

‘7;‘.: which follows from Algorithm 9 or directly from the facts that B-splines are nonnegative
o (Sec. 1) and add up to 1 at every point (see (4.6)).

g

For a statement of the full shape preserving property, we recall that
§”(a)

is the standard notation for the number of {strong) sign changes in a sequence a. Thus

e o s
¢ "1 T2 v,
TASULA

s (1,-1,1,-1) =3, $7(1,0,1.—1) =1, $7(0,0,0.0) = 0.

R
0
K Theorem 13. Variation diminution S~ (s) < S (a): i.e., with 7y < --- < z,

Ve arbitrary,
o $(s(1),--.,8(z,)) < S (a).

‘l
P |
::o'. Proof. Recall from Sec. 11 that s(z,),...,s(z,) is a subsequence of the sequence a
o:;!- of coefficients for s with respect to the refined knot sequence t which contains each z, at

N least k — 1 times. Hence it is sufficient to prove that S™(a@) < S (a). But this follows once
RN we know that S~ (a) < S~ (a), with é obtained by (11.3). i.e., by insertion of just one knot.
(7' For this simple case, though, the conclusion is immediate if we think of the construction of
"‘f a from a as occurring in two steps: In the first step. we insert @, between @, , and a,, and
il this does not increase the number of sign changes since each @, is a conver combination
e of its neighbors a,_; and a, in that new sequence. In the second step. we pull out a as a
o subsequence. and this may onlyv lower the number of sign changes.

:."-

b

S— RTINS *-v-:x" *.»*W”‘"""‘*g
e' :;"u‘"‘“" At: 0*0"‘0 ﬁ'l'ig “:‘ x ‘t-\. \‘i “\..th.\w" {‘. W ..:-.{; .-“-‘ AN
' ! 0 oy '- N
g ""‘“‘”‘. &é XN AN K u:‘m' "'t‘ «:2;0:2'0: ‘:".':.n'.c u‘. ) O‘v‘l'»\'t b4 'ﬂ i, o




TRITITITTREE T R TS - NV N LT T v Clodink ek Sab And ol Sed 4ob 2.4 -
{Y‘\ A R N N W W O T N T T o P T o U T T T W TR T W W

.
R -_“._-:
=\
2 '
) B(asic)-Spline Basics 33
N .&j .
:;:3 Corollary. Shape preservation A spline crosses any straight line no more often
Rr than does its control polygon. In particular. if the control polygon is monotone (convex),
then so is the spline.
I‘ l
N Proof Let s be the spline and p the straight line. Then S™(s — p) is the number
o
"'\;’ of times the spline crosses the straight line. Since s — p is a spline, this is bounded by
e S~ (a - b), with a,b the B-spline coefficients of s. resp. p with respect to t, and this equals
- the number of times the control polygon C, ¢ crosses the control polygon for p. But, as
n_{;{ we observed in Sec. 11. the control polygon for the straight line p is p itself. This proves
.JC:-j» the general statemnent.
o . . L . o
s For the particulars. recall that a (continuous) function is monotone if and only if it
o crosses any any constant function at most once, and that a function is convex if it crosses
sl any straight line at most twice (dipping first below and then rising above the line in case
o) it crosses it twice). i
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o Figure 13.1 A cubic spline. its control polvgon, and various straight lines
Toor intersecting them. The control polygon ezaggerates the shape
4,00, . . .
‘ of the spline. The spline crossings are bracketed by the control
R polygon crossings.
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